Detection of non-topological motifs in protein structures.
نویسندگان
چکیده
We present an efficient technique for the comparison of protein structures. The algorithm uses a vector representation of the secondary structure elements and searches for spatial configurations of secondary structure elements in proteins. In such recurring protein folds, the order of the secondary structure elements in the protein chains is disregarded. The method is based on the geometric hashing paradigm and implements approaches originating in computer vision. It represents and matches the secondary structure element vectors in a 3-D translation and rotation invariant manner. The matching of a pair of proteins takes on average under 3 s on a Silicon Graphics Indigo2 workstation, allowing extensive all-against-all comparisons of the data set of non-redundant protein structures. Here we have carried out such a comparison for a data set of over 500 protein molecules. The detection of recurring topological and non-topological, secondary structure element order-independent protein folds may provide further insight into evolution. Moreover, as these recurring folding units are likely to be conformationally favourable, the availability of a data set of such topological motifs can serve as a rich input for threading routines. Below, we describe this rapid technique and the results it has obtained. While some of the obtained matches conserve the order of the secondary structure elements, others are entirely order independent. As an example, we focus on the results obtained for Che Y, a signal transduction protein, and on the profilin-beta-actin complex. The Che Y molecule is composed of a five-stranded, parallel beta-sheet flanked by five helices. Here we show its similarity with the Escherichia coli elongation factor, with L-arabinose binding protein, with haloalkane dehalogenase and with adenylate kinase. The profilin-beta-actin contains an antiparallel beta-pleated sheet with alpha-helical termini. Its similarities to lipase, fructose disphosphatase and beta-lactamase are displayed.
منابع مشابه
MASS: multiple structural alignment by secondary structures
We present a novel method for multiple alignment of protein structures and detection of structural motifs. To date, only a few methods are available for addressing this task. Most of them are based on a series of pairwise comparisons. In contrast, MASS (Multiple Alignment by Secondary Structures) considers all the given structures at the same time. Exploiting the secondary structure representat...
متن کاملTopological classification of RNA structures.
We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number whose value quantifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structur...
متن کاملMolecular detection of proteolytic activity of human parechovirus 2A protein by gene expression
Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...
متن کاملCross-Disciplinary Detection and Analysis of Network Motifs
The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books ...
متن کاملUnderstanding hydrogen-bond patterns in proteins using network motifs
UNLABELLED Protein structures can be viewed as networks of contacts (edges) between amino-acid residues (nodes). Here we dissect proteins into sub-graphs consisting of six nodes and their corresponding edges, with an edge being either a backbone hydrogen bond (H-bond) or a covalent interaction. Six thousand three hundred and twenty-two such sub-graphs were found in a large non-redundant dataset...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering
دوره 9 12 شماره
صفحات -
تاریخ انتشار 1996